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In this paper I discuss analytic and numerical calculations of the magnetic-field and sheet-current distribu-
tions in superconducting strips of width 2a and arbitrary thickness 2b at the center when the cross-section is an
ellipse, a rectangle, and a shape intermediate between these limits. Using critical-state theory, I use several
methods to determine the functional dependence of the ac transport-current losses upon F= I / Ic, where I is the
peak alternating current and Ic is the critical current, and I discuss how this dependence can be affected by the
cross-sectional shape, aspect ratio, and a flux-density-dependent critical current density Jc�B�.
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I. INTRODUCTION

In determining the usefulness of a type-II superconductor
in applications, the ac losses are a very important factor.
Many composite conductors currently under development for
large-scale applications of superconductivity are in the form
of tapes, consisting of superconducting strips embedded in a
nonsuperconducting metallic matrix. In this paper I focus on
the self-field hysteretic ac losses of such superconducting
strips carrying an ac, neglecting the possibility of losses in
the surrounding matrix.

In a classic paper, Norris1 investigated the hysteretic ac
losses in type-II superconductors with a variety of cross-
sections, and he derived results for the ac transport-current
losses expressed in powers of F= I / Ic, where I is the peak
alternating current and Ic is the critical current. For small
values of F, Norris found that the losses were proportional to
F3 for wires of elliptical or circular cross-section but were
proportional to F4 for thin strips of rectangular cross-section.
The large difference in the power-law behavior seems puz-
zling in view of the fact that films of elliptical cross-section
look very similar to films of rectangular cross-section when
both films are thin.

To analyze the reasons for this difference in power-law
behavior, there are at least three theoretical questions that
need to be addressed. First, how thin must a rectangular strip
of width 2a and thickness 2b be in order for the ac losses to
be well described by the thin-film limit studied by Norris?
Second, assuming that a film of width 2a and thickness 2b in
the middle is thin enough to be described by the thin-film
limit, how do the ac losses depend upon the cross-sectional
shape if the cross-section is neither a rectangle nor an ellipse
but something in between, as shown in Fig. 1? Third, since
the critical current density Jc depends in general upon the
local magnetic flux density B, does the B dependence of Jc
have a significant effect?

Experimental questions regarding the power-law behavior
also have been raised. Some measurements2,3 of the ac
transport-current losses in YBCO films and Bi-2223 tapes
have been found to deviate from the F4 behavior expected
for thin strips of rectangular cross-section.

In this paper I theoretically explore how the transport ac
losses of a superconducting strip depend upon F= I / Ic, and I
discuss how this functional dependence can be affected by

the superconductor’s cross-sectional shape, aspect ratio, and
Jc�B�. I begin in Sec. II by discussing ways to calculate the
field and current distributions in the critical state. In Sec. II A
I discuss thick strips with cross-sections described by a shape
function yc�x�, and I model the inner boundary of the flux-
penetrated region by a similar function yI�x�. In Sec. II B I
present results for the field and current distributions for su-
perconducting strips of different cross-sectional shapes yc�x�
in the thin-film limit. In Sec. III I apply these results to
calculate the hysteretic ac transport losses. After discussing
some general methods in Sec. III A, I discuss the losses in
conductors with elliptical cross-section in Sec. III B and with
rectangular cross-section in Sec. III C. For the thin-film limit
I calculate the losses in conductors with elliptical, rectangu-
lar, and intermediate cross-sections in Sec. III D, and I show
how to account approximately for the B dependence of Jc�B�
in Sec. III E. Finally, I briefly summarize my results in Sec.
IV.

II. FIELD AND CURRENT DISTRIBUTIONS

A. Thick strips

To simplify the calculations and obtain analytic results,
Norris used critical-state theory,4 assuming that the relation
between the magnetic induction B and the magnetic field H
is B=�0H and that the critical current density Jc is indepen-
dent of B. I use the same assumptions here. Norris noted that
the ac loss calculation is greatly simplified by first finding
the shape of the cross-sectional area of the flux front at the
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FIG. 1. Cross-sections considered in this paper, all representing
superconducting strips of width 2a and thickness d=2b at the cen-
ter: an ellipse of semimajor axis a and semiminor axis b, a rectangle
of length 2a and height 2b, and an intermediate shape, described in
the text.
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peak current I, and he found that for superconductors of el-
liptical cross-section the flux front is an ellipse with the same
aspect ratio as that of the superconductor itself. Although
Norris did not report the shape of the flux front for very thin
superconductors of rectangular cross-section, the shape can
be inferred from the current and field distributions.5,6 In this
paper, I assume a function with two fitting parameters to
approximate the flux-front shape. Although this shape func-
tion does not yield exact results, the resulting magnetic-field
and current distributions are very nearly correct. I then use
these distributions to calculate the ac losses.

Sketched in Fig. 1 are the sample cross-sections to be
considered in this paper. The boundary surface can be de-
scribed by y= �yc�x�, where

yc�x� =
b tan−1��2�1 − x2/a2�

tan−1 �
�1�

or its inverse, x= �xc�y�, where

xc�y� = a�1 −
1

�2 tan2� y tan−1 �

b
� �2�

and � is a dimensionless parameter that can range from 0 to
�. In the limit �→0, these equations describe an ellipse of
semiaxes a and b; in the limit �→�, they describe a rect-
angle of dimensions 2a�2b; and for an intermediate value
of �, they describe the intermediate shape shown in Fig. 1.

The radius of curvature of the curve yc�x� at x=a or of
xc�y� at y=0 is

Rc = � �

tan−1 �
�2b2

a
. �3�

For reference, note that Rc=b when �=0 for b /a=1, �
=4.23 for b /a=0.1, �=15.0 for b /a=0.01, �=49.0 for b /a
=0.001, �=156 for b /a=0.0001, and �=496 for b /a
=0.00001.

The cross-sectional area Sc of the sample is

Sc =
2�ab��1 + �2 − 1�

� tan−1 �
, �4�

such that Sc→�ab when �→0; Sc→4ab when �→�; and
�ab�Sc�4ab when 0����.

When a uniform current density Jz=Jc is flowing through-
out the entire cross-section Sc, the vector potential is
Ac�x ,y�=Acz�x ,y�ẑ,

Acz�x,y� = −
�0Jc

4�
� �

Sc

dudv log� �x − u�2 + �y − v�2

u2 + v2 � ,

�5�

where the integral over u and v extends over the area Sc and
the constant of integration has been chosen such that
Acz�0,0�=0. Expressions for Acze�x ,y� for the elliptical
cross-section and Aczr�x ,y� for the rectangular cross-section
are given in Appendices A and B, but Aczi�x ,y� for the inter-
mediate case is most conveniently obtained by numerical
integration using upper and lower limits obtained from Eq.

�1� or �2�. The magnetic induction is Bc�x ,y�=�0Hc�x ,y�
=��Ac�x ,y�.

On the other hand, when a current I� Ic is applied in the
z direction to a sample originally in the virgin state contain-
ing no magnetic flux, magnetic flux pushes its way into the
sample. The leading edge of the flux front encircles an area
SI, here approximated as a roughly elliptical shape of width
2c and height 2y0, with a boundary in the first quadrant given
by equations of the same form as Eqs. �1� and �2�

yI�x� =
y0 tan−1��2�1 − x2/c2�

tan−1 �
�6�

or its inverse,

xI�y� = c�1 −
1

�2 tan2� y tan−1 �

y0
� , �7�

where � is a dimensionless parameter that can range from 0
to �. The area enclosed by the flux front is

SI =
2�cy0��1 + �2 − 1�

� tan−1 �
. �8�

Consider, as an auxiliary function, the vector potential
AI�x ,y�=AIz�x ,y�ẑ generated by a uniform current density
Jz=−Jc flowing only in the cross-section SI,

AIz�x,y� =
�0Jc

4�
� �

SI

dudv log� �x − u�2 + �y − v�2

u2 + v2 � , �9�

where the integral over u and v extends over the area SI, and
the constant of integration again has been chosen such that
AIz�0,0�=0. The corresponding magnetic induction is
BI�x ,y�=�0HI�x ,y�=��AI�x ,y�.

When the current I� Ic is applied in the z direction, the
current density is Jz=Jc in the area Sp=Sc−SI, the flux-
penetrated portion of Sc outside the area SI, and Jz=0 inside
the area SI. The resulting vector potential A�x ,y�=Az�x ,y�ẑ is

Az�x,y� = Acz�x,y� + AIz�x,y� ,

=
�0Jc

4�
� �

Sp

dudv log� �x − u�2 + �y − v�2

u2 + v2 � , �10�

subject to the condition that the shape of the area SI is such
that Az=0 inside the area SI, and the corresponding
magnetic-flux density

B�x,y� = Bc�x,y� + BI�x,y� �11�

is also zero there. The reduced current F= I / Ic, where
Ic=JcSc, obeys

F = Sp/Sc. �12�

Norris1 showed that if the cross-section of the supercon-
ductor is an ellipse of semiaxes a and b, such that the bound-
ing surface is described by Eqs. �1� and �2� with �→0 and
Sc=�ab, the flux front encloses the area SI=�cy0, an ellipse
of semiaxes c and y0 described by Eqs. �6� and �7� with �
→0, where y0 /c=b /a. The reduced current F= I / Ic obeys
F=1−c2 /a2.
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Norris1 also considered a flat superconducting strip of
width 2a and thickness 2b	2a, and obtained the current
density averaged over the thickness, which can be written as

J̄z�x� =
2Jc

�
tan−1�a2 − c2

c2 − x2 , 	x	 � c , �13�

=Jc, c 
 	x	 
 a , �14�

where F= I / Ic=�1−c2 /a2 is the reduced current. Since

J̄z�x�=Jc
1−yI�x� /b�, the area SI has only a roughly elliptical
shape of width 2c with upper and lower boundaries at
y= �yI�x� as given in Eq. �6�, where �2=c2 / �a2−c2�= �1
−F2� /F2 and y0= �2b /��tan−1 �. When F→0, �→�, and SI
becomes a rectangle with width 2a and height 2b, filling the
entire cross-section. When F→1, �→0, and SI becomes a
small ellipse with semimajor axis c�a�1−F2 and semimi-
nor axis y0��2b /���1−F2, so that y0 /c= �� /2�b /a.

To obtain approximate results for the vector potential
Az�x ,y�ẑ and the corresponding magnetic-flux density B�x ,y�
for sample cross-sections that are intermediate between an
ellipse and a very thin flat strip, we can use the following
procedure. When the current I� Ic, we assume that the vector
potential is given by Eq. �10�, where the auxiliary vector
potential AIz�x ,y� depends upon the shape SI, which in turn is
characterized by three fitting parameters, c, y0, and �. For a
given value of F= I / Ic, we can determine these parameters
from three equations, Eq. �12�, By�c ,0�=0 and Bx�0,y0�=0.

For a rectangular cross-section we can use Eq. �11�,
evaluate Bc�x ,y� analytically using Appendix B, and calcu-
late BI�x ,y� numerically using Appendix C. Examples of the
results of this procedure are shown in Fig. 2, which exhibits

plots of By�x ,0� and Bx�0,y� vs x for b /a=1 /2 and a series
of values of c /a. When b /a is not very small �as in the case
shown�, By and Bx vary nearly linearly with distance near the
sample surface. Table I exhibits the corresponding values of
y0 /a, �, SI /Sc, and F= I / Ic. The solid curves in Fig. 3 show
plots of �x= �a−c� /a, calculated as above, vs F= I / Ic for a
variety of values of b /a. For F	1 and modest values of b /a,
�x�F; note that �x�F2 only for very small values of b /a.

Figure 4 shows a contour plot of Az�x ,y� vs x and y,
calculated as described above, for a strip of rectangular
cross-section. The contours correspond to magnetic-field
lines, which, in principle, do not penetrate into the area SI
bounded by the bold curve. However, the assumed shape of
the area SI as approximated by y= �yI�x� 
Eq. �6�� or
x= �xI�y� 
Eq. �7�� does not give exact solutions for either
the vector potential Az�x ,y� or the magnetic induction
B�x ,y�=�0H�x ,y�. Nevertheless, for the cases shown in
Figs. 2 and 4, the calculated values of B�x ,y�
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FIG. 2. Plots of �a� By�x ,0� /�0Jca and �b� Bx�0,y� /�0Jca vs
x /a for c /a=0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 in a
strip of rectangular cross-section of dimensions 2a�2b, where b
=a /2. The corresponding values of y0, �, SI /Sc, and F= I / Ic are
given in Table I.

TABLE I. Fitting parameters for SI �c, y0, and ��, SI /Sc, and
F= I / Ic for the plots shown in Fig. 2 obtained from the requirements
that Bx�0,y0�=0 and By�c ,0�=0. The strip has a rectangular cross-
section of dimensions 2a�2b, where b=a /2, such that Sc=2a2.

c /a y0 /a � SI /Sc F

0.0 0.000 0.000 0.000 1.000

0.1 0.042 0.141 0.007 0.993

0.2 0.084 0.290 0.027 0.973

0.3 0.127 0.453 0.061 0.939

0.4 0.171 0.642 0.111 0.889

0.5 0.217 0.878 0.178 0.822

0.6 0.265 1.197 0.267 0.733

0.7 0.316 1.685 0.382 0.618

0.8 0.371 2.596 0.533 0.467

0.9 0.432 5.184 0.731 0.269

1.0 0.500 � 1.000 0.000

b�a � 1

0.1
0.01

0.001
0.0001
Norris

1.000.500.200.100.050.02
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FIG. 3. The upper five solid curves show values of
�x= �a−c� /a vs F= I / Ic for a strip of rectangular cross-section
�2a�2b�, numerically calculated as described in the text for b /a
=1, 0.1, 0.01, 0.001, and 0.0001. The corresponding dashed curves
show results using the conformal-mapping method described in
Sec. III C 2. The lowest solid curve shows �x=1−�1−F2, obtained
from Eq. �20� in Sec. II B, Norris’s result for a very thin strip of
rectangular cross-section �Ref. 1�.
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=�By
2�x ,y�+Bx

2�x ,y� and Az�x ,y� inside the area SI, though
not precisely equal to zero, are about three or four orders of
magnitude smaller than their values on the perimeter of the
strip. These results indicate that the values of Az�x ,y� or the
magnetic induction B�x ,y�=�0H�x ,y� calculated as above
are reasonable approximations to the exact solutions, thereby
permitting relatively simple calculations showing how the
hysteretic ac losses depend upon the cross-sectional shape.

B. Thin-film limit

The magnetic fields generated by long thin strips can be
calculated as in Refs. 1, 5, and 6, using the method of com-
plex fields. Instead of dealing with the vector field H�x ,y�
=B�x ,y� /�0= x̂Hx�x ,y�+ ŷHy�x ,y�, one works with the com-
plex field H��=Hy + iHx, which is an analytic function of
=x+ iy outside the strip. Since analytic functions obey the
Cauchy relations, the conditions that � ·H=0 and ��H=0
are automatically satisfied.

In the limit as b /a→0, the complex magnetic field out-
side a thin strip whose boundary surface is described by Eq.
�1� and which carries a total current I with a current density
Jz=Jc at the edges �c
 	x	�a� and an average current den-

sity J̄z�x��Jc in the middle �	x	�c� is

H�� =
Jcb

tan−1 �
�tanh−1� ��̃2 − c̃2

�1 + �2�1 − c̃2�
�

− tanh−1���̃2 − 1�� , �15�

where ̃= /a and c̃=c /a. The condition relating I and c is

F =
I

Ic
=

�1 + �2�1 − c̃2� − 1
�1 + �2 − 1

, �16�

where Ic=JcSc 
see Eq. �4��. Here �̃2− c̃2 means

�̃− c̃�1/2�̃+ c̃�1/2.
Equations �15� and �16� reduce to

H�� = Jcb��̃2 − c̃2 − �̃2 − 1� , �17�

F = 1 − c̃2 �18�

for an elliptical cross-section ��=0� and to

H�� =
2Jcb

�
tanh−1� 1 − c̃2

̃2 − c̃2
, �19�

F = �1 − c̃2 �20�

for a rectangular cross-section ��=��.
Shown in Fig. 5 are plots of Hy�x ,0� and Hx�x ,−�� ob-

tained from Eqs. �15�–�20� for F= I / Ic=0.75 and �=0 �solid
curves�, 2.474 �dashed�, and � �solid�. The cross-sectional
area for �=2.474 is 3.57ab, the average of the areas of an
ellipse ��ab� and a rectangle �4ab�. In the regions c
 	x	
�a, Jz=Jc, and Hx�x ,−��=Jcyc�x� 
see Eq. �1��.

III. AC LOSSES

A. Methods

We are now in a position to analyze some general features
of the hysteretic transport ac losses in isolated superconduct-
ing strips. Let us consider ac of amplitude I less than Ic at
frequencies f =1 /T that are sufficiently low that eddy-current
losses are negligible and the losses can be calculated using a
quasistatic approach.1 The solutions for B�x ,y�=�0H�x ,y�
derived in Sec. II can be used to calculate Q�, the energy
dissipated per cycle per unit length. Consider time t=0,
when the current has its maximum value I in the z direction,

�1.0 �0.5 0.0 0.5 1.0

�0.4

�0.2

0.0

0.2

0.4

x�a

y�
a

FIG. 4. Contour plot of Az�x ,y� vs x /a and y /a for c /a=0.8,
y0 /a=0.372, �=2.629, SI /Sc=0.534, and F= I / Ic=0.466 in a strip
of rectangular cross-section of dimensions 2a�2b, where b=a /2.
The flux front, described by y= �yI�x� 
Eq. �6�� and shown as the
bold curve, surrounds the area SI. The contours correspond to
magnetic-field lines, which circulate around SI in the counterclock-
wise direction.
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FIG. 5. Plots of Hy�x ,0� and Hx�x ,−�� �on the bottom of the
strip� calculated from Eqs. �15�–�20� for a=1, �=0, 2.474 �dashed�,
and �, and F= I / Ic=0.75, for which c /a=0.500, 0.579, and 0.661.
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the magnetic-field distribution is given by H�x ,y�
= x̂Hx�x ,y�+ ŷHy�x ,y�, the magnetic induction is B�x ,y�
=�0H�x ,y�, and the vector potential is A�x ,y�=Az�x ,y�ẑ.
Half a cycle earlier, at time t=−T /2, when the current was in
the opposite direction, B�x ,y ,−T /2�=−�0H�x ,y�. The loss
per cycle per unit length Q� is twice the loss in the half cycle
−T /2
 t
0. Thus

Q� = 2�
−T/2

0

dt� �
Sc

dxdyJz�x,y,t�Ez�x,y,t� . �21�

According to critical-state theory,4 during this time interval,
Ez is nonzero only where Jz is just above Jc, such that Jz can
be replaced by Jc in Eq. �21�, but the integral is to be carried
out only over those portions of the flux-penetrated cross-
section Sp, where B=��A is changing with time and
Ez�x ,y , t��0. Note that, if SI is chosen correctly, Ez=0
throughout the entire area SI and we may therefore chose a
gauge such that Az=0 there. Next, we can use Faraday’s law
in the form dl ·E=−�dS ·�B /�t=−�dS ·����A� /�t, where
the surface S is a rectangle with the sides Lz parallel to the z
axis and the ends extending from the origin to �x ,y� in the
flux-penetrated region. Application of Stokes’s theorem thus
yields

Ez�x,y,t� = − �Az�x,y,t�/�t . �22�

Substituting this expression into Eq. �21�, integrating over
time, noting that the change in the vector potential is
Az�x ,y ,0�−Az�x ,y ,−T /2�=2Az�x ,y�, we obtain

Q� = − 4Jc� �
Sp

dxdyAz�x,y� . �23�

�Since the current I is in the positive z direction at time
t=0, Az�x ,y��0 outside the area SI.� The areal density of
energy dissipated per unit length during one cycle therefore
can be expressed as q��x ,y�=4Jc	Az�x ,y�	. For example, for a
strip of rectangular cross-section, we can see from the con-
tour plot of Az�x ,y� in Fig. 4 that the largest values of
q��x ,y� occur at the four corners.

To compare the losses in strips with the same critical cur-
rent Ic but different cross-sections, it is useful to express Q�
in terms of a dimensionless geometry-dependent loss func-
tion L�F�, which is a function of F= I / Ic,

Q� = �0Ic
2L�F� , �24�

L�F� =
1

Sc
� �

Sp

dxdy��x,y� , �25�

��x,y� = − 4Az�x,y�/�0Ic. �26�

Note that ��x ,y� is proportional to the local density of time-
averaged energy dissipation.

The maximum hysteretic transport losses occur for I= Ic
or F=1, when the flux front first touches the axis and SI
shrinks to zero. For a strip with elliptical cross-section, as
shown by Norris,1

Le�1� = 1/2� = 0.159, �27�

independent of the ratio b /a. For a strip with rectangular
cross-section, as shown by Rhyner,7

Lr�1� = 
6 ln 4 − 7 − b̃2 ln�1 + b̃−2� − b̃−2 ln�1 + b̃2�

+ 2�b̃ tan−1 b̃−1 + b̃−1 tan−1 b̃��/6� , �28�

where b̃=b /a. For a square cross-section �b=a�, L�1�
=0.163, and for b /a	1, L�1�=0.123, in agreement with
Rhyner’s results of Ref. 7 but in disagreement with Norris’s
results in Table II of Ref. 1. Shown in Fig. 6 are calculated
values of L�1� vs b /a for various cross-sectional shapes char-
acterized by the value of � in Eq. �4�. When b=a, L�1�
�0.159 for all ��0, with the greatest deviation occurring
for a square cross-section ��=��. On the other hand, when
b	a, L�1��0.159 for all ��0, with the greatest deviation
again occurring for a square cross-section.

Another way to express the ac loss per cycle is to start
from Eq. �23�, use the symmetries Az�−x ,y�=Az�x ,−y�
=Az�x ,y�, note that Az�x ,y�=0, Bx�x ,y�=0, and By�x ,y�=0
inside SI, integrate over y in the first quadrant, and carry out
partial integrations using Bx=�Az /�y and By =−�Az /�x.
Equation �24� then can be evaluated using

L�F� = Lx�F� + Ly�F� , �29�

Lx�F� = p�
0

a

dx�
yl�x�

yc�x�

dy
yc�x� − y�
− Bx�x,y�� , �30�

Ly�F� = p�
c

a

dxG�x�By�x,0� , �31�

where
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0.13

0.14

0.15

0.16

b�a

L
�1
�

FIG. 6. Plots of L�1� vs b /a at I= Ic calculated from Eqs. �4�,
�5�, and �25�–�28� for �=0 �elliptical cross-section, Sc=3.14ab�,
values of � corresponding to intermediate shapes and cross-
sectional areas �see Fig. 1�, �=1.186 �Sc=3.36ab�, �=2.474
�Sc=3.57ab�, �=5.961 �Sc=3.79ab�, and �=� �rectangular cross-
section, Sc=4ab�. The cross-sectional area for �=2.474 is the av-
erage of the areas of the elliptical and rectangular cross-sections.
For small b /a the curves asymptotically approach the correspond-
ing thin-film limits calculated in Sec. III D, shown as dashed lines.
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p =
16

�0JcSc
2 , �32�

yl�x� = yI�x�, 0 
 x � c , �33�

=0, c 
 x 
 a , �34�

G�x� = �
x

a

dx�yc�x�� . �35�

Note that Ly describes the dissipation due to magnetic flux in
the form of vortex or antivortex segments perpendicular to
the strip transporting flux density By in from the edges at
x= �a, while Lx describes the dissipation due to magnetic
flux in the form of vortex or antivortex segments parallel to
the strip transporting flux density Bx in from the top and
bottom surfaces.

The ratio fy�F�=Ly�F� /L�F� is an increasing function of

F= I / Ic and a decreasing function of b̃=b /a. Since for a
fixed value of F, fy�F�→1 as b /a→0, Eq. �31� can be used
to evaluate L�F� in the thin-film limit, as shown later in Fig.
9.

B. Elliptical cross-section

1. By contribution

As shown in Ref. 1, the total hysteretic ac losses of a
conductor of elliptical cross-section have the same remark-
ably simple form for all values of the ratio b /a,1

L�F� = 
�1 − F�ln�1 − F� + �2 − F�F/2�/� , �36�

where F= I / Ic. The fraction fy�F�=Ly�F� /L�F� easily can be
evaluated numerically for a strip of elliptical cross-section
using Eq. �31� and expressions for By�x ,0� given in Ref. 1,
which yield

Ly�F� =
8

�2�1 − b̃2�
�

c̃

1

dx̃�cos−1 x̃ − x̃�1 − x̃2�

� ��x̃2 − c̃2�1 − b̃2� − b̃x̃� . �37�

For a strip with elliptical cross-sections c̃ and F are related
via c̃=c /a=�1−F.1 The behavior of fy�F� vs F is shown in

Fig. 7 for various values of b̃=b /a

2. Behavior for small F

Expansion of Eq. �36� in powers of F yields

L�F� =
F3

6�
�1 +

1

2
F +

3

10
F2 + ¯� . �38�

The leading term in this expansion can be obtained most
simply as follows. In the Meissner state, the tangential mag-
netic field at the surface of an infinitely long cylinder of
semimajor and semiminor axes a and b carrying current I in
the z direction is8

Hts���� =
I

2���a sin ���2 + �b cos ���2
, �39�

where a point on the surface of the ellipse is described by
�x ,y�= �a cos �� ,b sin ���. If the self-field at the surface is
much larger than Hc1 �or if we assume that Hc1 is negligibly
small�, then according to critical-state theory, magnetic flux
will penetrate to a distance Lp����=Hts���� /Jc from the sur-
face, assuming that Lp���� is much smaller than the corre-
sponding radius of curvature of the surface,

����� = 
�a sin ���2 + �b cos ���2�3/2/ab . �40�

When a type-II superconductor is subjected to a parallel ac
field of amplitude H0, the hysteretic ac loss per unit area per
cycle is known to be4

QA =
2�0H0

3

3Jc
. �41�

Thus the hysteretic ac loss per cycle per unit length of ellip-
tical cylinder can be calculated to lowest order in F using

Q� =� dl
2�0Hts

3 ����
3Jc

. �42�

where dl=��a sin ���2+ �b cos ���2d�� is the element of arc
length. The integral can be carried out without difficulty,
yielding

Q� = �0Ic
2� F3

6�
� , �43�

where Ic=�abJc, which agrees with the Norris result to low-
est order in F. Application of the condition that Lp����
	����� at ��=0 is equivalent to the requirement that F
	 �b /a�2 for the derivation of Eq. �43� to be valid. Neverthe-
less, the Norris derivation, yielding the same F3 behavior for
small F, is not subject to this stringent limitation but instead
yields the same result for all values of b /a whenever F	1.

b�a � 0.0001
0.001

0.01

0.03

0.1

0.3

1

1.000.500.200.100.050.020.01
0.0

0.2

0.4

0.6

0.8

1.0

1.2

F�I�Ic

f y
�F
�

FIG. 7. Plots of the loss fraction fy�F�=Ly�F� /L�F� vs F= I / Ic

calculated from Eqs. �36� and �37� for b /a=0.0001, 0.001, 0.01,
0.03, 0.1, 0.3, and 1 for conductors with an elliptical cross-section
��=0�.
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C. Rectangular cross-section

1. F3 or F4?

Consider a strip of width 2a and arbitrary thickness 2b in
the middle, as shown in Fig. 1. According to critical-state
theory, for small values of F= I / Ic, magnetic flux penetrates
only to a small depth Lp=Hts /Jc, where Hts is the self-field
tangent to the surface. The flux-penetrated cross-sectional
area Sp then can be thought of as a band with a geometry-
dependent width that is proportional to F and with a total
length equal to the perimeter of the strip. Note also that
within Sp, B varies linearly and Az varies quadratically as a
function of the distance from SI such that the integral of Az
over the cross-section should vary as F3. Alternatively, the
hysteretic ac loss per cycle per unit length can be calculated
to good accuracy by using Eq. �41�, replacing H0 by Hts, and
integrating around the circumference of the strip. The hyster-
etic ac loss per cycle per unit length Q� �and hence the loss
function L� should always vary as F3 for small F. How,
therefore, can we explain the Norris result for thin strips of
rectangular cross-section,1

L�F� = 
�1 − F�ln�1 − F� + �1 + F�ln�1 + F� − F2�/� ,

�44�

which has the limiting behavior

L�F� = F4/6� �45�

for small F?
In short, the explanation is that although the losses are

indeed approximately proportional to F3 for small F, the val-
ues of F for which the F3 behavior holds in a thin film of
rectangular cross-section are very small. Of the terms in Eqs.
�29�–�31�, the F3 behavior for small F arises from Lx
��b /a�F3, while Ly �F4. Roughly speaking, Lx becomes
negligible relative to Ly when F�b /a. Thus, if one considers
values of F�0.01 for samples of rectangular cross-section
with b /a
0.0001, the losses due to the penetration of Bx
into the top and bottom surfaces, as described by Lx, are
much smaller than the losses due to penetration of By in from
the edges, as described by Ly.

2. Conformal-mapping method

To describe the losses for small F, a calculation similar to
that described in Eqs. �39�–�43� in Sec. II can be carried out
for an infinitely long cylinder of rectangular cross-section
with width 2a and height 2b. In this case the tangential mag-
netic field at the surface, derived using conformal-mapping
methods8–10 and the Schwarz-Christoffel transformation,10,11

is

Hts���� =
I

2��	sin2 �� − sin2 ��	1/2 , �46�

where cos ��=k, sin ��=k�=�1−k2,

a/� = f = E�k� − k�2K�k� , �47�

b/� = f� = E�k�� − k2K�k�� , �48�

where K�k� is the complete elliptic integral of the first kind
of modulus k and complementary modulus k�=�1−k2, E�k�
is the complete elliptic integral of the second kind, and an
element of arc length around the perimeter is dl=�	sin2 ��
−sin2 ��	1/2d��, starting with �x ,y�= �a ,0�, where ��=0. At
�x ,y�= �a ,b�, ��=��, and at �x ,y�= �0,b�, ��=� /2. Assum-
ing that magnetic flux penetrates to a depth Lp����
=Hts���� /Jc, using Eqs. �41� and �42�, and noting that all
four quadrants give equal contributions, we obtain the fol-
lowing integral yielding the hysteretic ac loss per cycle per
unit length:

Q� =
�0I3

3�3Jc�
2�

0

�/2 d��

	sin2 �� − sin2 ��	
. �49�

However, at ��=��, the corner �x ,y�= �a ,b� of the rectangle,
the integrand has an unphysical divergence, which needs to
be cutoff. Physically, the flux fronts penetrating from the side
x=a and the top y=b intersect at points near the corner cor-
responding to ��=����, where

� = � 9

8kk�
�Lpm

�
�2�1/3

	 1 �50�

and Lpm=Lp������. Using Eq. �39� and eliminating Lpm in
favor of F= I / Ic, where Ic=4abJc=4�2f f�Jc, we obtain

� = � 3f f�

2�kk�
F�1/2

	 1. �51�

Integrating Eq. �49� over �� from 0 to ��−� to obtain the
losses on the right side, replacing the integrand by its value
at ���� over the range ��−�������+� to approximate
the losses in the corner, integrating Eq. �49� over �� from
��−� to � /2 to obtain the losses on the top, and assuming
�	2kk� yields

Q� = �0Ic
2Lrect

�1� �F� , �52�

where

Lrect
�1� �F� =

2f f�F3

3�3kk�
�2 + ln�8�k3k�3

3f f�F
�� . �53�

The constant term within the brackets is the corner contribu-
tion and the logarithmic term arises from two equal contri-
butions from the length b on the side and the length a on the
top. Equation �53� should be a good approximation for small
values of F obeying Eq. �51�.

The dashed curves in Fig. 3 show values of �x= �a
−c� /a vs F calculated using the above procedure, where
�a−c� is the depth of penetration of the flux front measured
along the x axis from the surface at x=a. The agreement with
the solid curves is best for the larger values of b /a. However,
the cutoff procedure to account approximately for the other-
wise divergent magnetic fields at the corners leads to poorer
agreement for small values of b /a, when the corner regions
occupy a larger fraction of the cross-section.

The upper solid curves in Fig. 8 show plots of Lrect
�1� �F� vs

F for small F before the curves intersect with the Norris
thin-film result for L�F�, Eq. �44�. For comparison, the
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dashed curves show the small-F limits F3 /6� for the ellipti-
cal cross-section, Eq. �38�, and F4 /6� for thin strips of rect-
angular cross-section, Eq. �45�. Since the logarithmic factor
in Eq. �53� is slowly varying, the behavior of the hysteretic
losses in a long strip of rectangular cross-section must al-
ways behave approximately as L�F3 for sufficiently small
F, as is evident from Fig. 8.

We can extend the above approach to somewhat larger
values of F as follows. We first focus on the flux front that
penetrates from the top y=b. In terms of the auxiliary vari-
able �t�, when ��
�t�
� /2, the x and y coordinates of a
point on the top flux front in units of a are

x̃t��t�� = 
E��,k� − k�2F��,k��/f , �54�

ỹt��t�� =
f�

f
−

2f�F

��sin2 �t� − sin2 ���1/2 , �55�

where x̃t��t��=xt��t�� /a, ỹt��t��=yt��t�� /a, F= I / Ic, F�� ,k� is
the normal elliptic integral of the first kind12,13 of amplitude
�=arcsin�cos �t� /cos ���, modulus k, and complementary
modulus k�=�1−k2, and E�� ,k� is the normal elliptic inte-
gral of the second kind. We next characterize the flux front
that penetrates from the side x=a. In terms of the auxiliary
variable �s�, when 0
�s�
��, the x and y coordinates of a
point on the side flux front in units of a are

x̃s��s�� = 1 −
2f�F

��sin2 �� − 
sin2 �s�1/2 , �56�

ỹs��s�� = 
E���,k�� − k2F���,k���/f , �57�

where x̃s��s��=xs��s�� /a, ỹs��s��=ys��s�� /a, and where
��=arcsin�sin �s� /sin ���. The top flux front and the side flux

front intersect when �t�=�tx� and �s�=�sx� , where �tx� and �sx� are
the solutions of the following two equations:

x̃t��t�� = x̃s��s�� = x̃cross, �58�

ỹt��t�� = ỹs��s�� = ỹcross, �59�

where x̃cross and ỹcross are the x and y coordinates of the
crossing point in units of a. Equations �58� and �59� always
have physically reasonable solutions for sufficiently small
values of F= I / Ic.

The corresponding approximation to the ac loss per cycle
per unit length can be obtained by integrating Eq. �49� over
�� from 0 to �sx� to obtain the losses on the right side, replac-
ing the integrand over the range �sx� �����tx� by the average
of the values at �sx� and �tx� to approximate the losses in the
corner, and integrating Eq. �49� over �� from �tx� to � /2 to
obtain the losses on the top. The result is

Q� = �0Ic
2Lrect

�2� �F� , �60�

where

Lrect
�2� �F� =

4f f�F3

3�3 � 1

kk�
tanh−1� tan �sx�

tan ��
�

+
��tx� − �sx� �

2
� 1

sin2 �� − sin2 �sx�

+
1

sin2 �tx� − sin2 ��
� +

1

kk�
coth−1� tan �tx�

tan ��
�� .

�61�

Values of the losses calculated from Eq. �61� are slightly
larger that those from Eq. �53�, but on Fig. 8 the two curves
are indistinguishable.

3. Numerical calculations

Shown in Fig. 9 are plots of L�F� vs F numerically cal-
culated from Eqs. �29�–�35�, where the parameters c, y0, and
� were obtained by simultaneously solving Eq. �12�,
By�c ,0�=0 and Bx�0,y0�=0. The curves of L�F� vs F behave
approximately as L�F3 for all values of b /a for sufficiently
small F. However, as b /a decreases, the curves of L�F�
merge into the curve Norris1 obtained for a very thin strip of
rectangular cross-section, Eq. �44�, which varies approxi-
mately as F4. The smaller the value of b /a, the smaller the
value of F at which the curves merge. For example, the
numerically calculated value of L�F� falls within 2% of the
Norris result, Eq. �44�, when F�0.93 for b /a=0.01, when
F�0.41 for b /a=0.001, when F�0.15 for b /a=0.0001, and
when F�0.05 for b /a=0.00001.

However, a comparison of the plots in Figs. 8 and 9 re-
veals that for small values of F, where the conformal-
mapping result for L�F� in Eq. �53� is expected to be most
accurate, the numerically calculated values of L�F� shown in
Fig. 9 are roughly a factor of two larger than the conformal-
mapping result for L�F� shown in Fig. 8. The reason for this
is that the assumed form for the flux front in Eq. �6� yields a
depth of magnetic-flux penetration Lp near the corners at

b�a �
1

0.1
0.01

0.001
0.0001

Norris

F3�6Π
F4�6Π

1.000.500.200.100.050.020.01
10�10

10�8

10�6

10�4

0.01

1

F�I�Ic

L

FIG. 8. The upper solid curves display plots of the loss function
L vs F= I / Ic calculated from Eq. �53� for a strip of rectangular
cross-section with relative dimensions b /a=1, 0.1, 0.01, 0.001, and
0.0001. The bottom solid curve shows the Norris result 
Eq. �44��
for a very thin strip of rectangular cross-section. For comparison,
the upper dashed line shows F3 /6� and the lower dashed curve
shows F4 /6�.
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�x ,y����a , �b� that is unrealistically large for small val-
ues of F. Since the tangential field at the surface Hts�JcLp is
correspondingly too large, and since the dissipation per cycle
per unit area of surface is approximately proportional to Hts

3


see Eq. �41��, the dissipation per cycle per unit length, ob-
tained by integrating around the circumference of the
sample, is also too large.

The main story told by the results displayed in Figs. 8 and
9 is that in a strip of rectangular cross-section the loss func-
tion L�F� is approximately proportional to F3 for small F
when b /a is on the order of unity, but as b /a decreases, the
F3 behavior moves to smaller values of F, opening up a

range of F values for which L�F� is approximately propor-
tional to F4.

D. Thin-film limit

We now calculate the hysteretic loss per cycle per unit
length Q� and the loss function L making use of the thin-
film-limit approximation that the contribution due to Lx is
negligible relative to that due to Ly. Using Eqs. �15� and
�31�–�35�, we find that the loss function for a thin film de-
scribed by Eq. �1� with the shape parameter � can be ob-
tained from

L�F� = C�
c̃

1

dx̃F�x̃�B̃y�x̃,0� , �62�

where

C = � 2�

���1 + �2 − 1�
�2

, �63�

F�x̃� =
�1 + �2

�
cos−1� x̃

�1 + �2�1 − x̃2�
� −

1

�
cos−1 x̃

− x̃ tan−1���1 − x̃2� , �64�

B̃y�x̃,0� = tanh−1� ��x̃2 − c̃2

�1 + �2�1 − c̃2�
� , �65�

x̃=x /a, c̃=c /a, and c̃ is related to F= I / Ic via Eq. �16�. For
�=0 and �, the integral can be evaluated analytically and the
results for L�F� are the same as those found by Norris,1 given
in Eqs. �36� and �44�.

The six solid curves in Fig. 10 show plots of the loss
function L�F� numerically calculated from Eqs. �62�–�65� for
a range of values of �. As expected, for small values of � the
curves lie close to the Norris result for an elliptical cross-
section, and for large values of � the curves approach the
Norris result for a rectangular cross-section.

b�a �
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0.1
0.01
0.001
0.0001
0.00001
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1

F�I�Ic

L

FIG. 9. The upper solid curves display plots of the loss function
L vs F= I / Ic numerically calculated from Eqs. �29�–�35� for a strip
of rectangular cross-section with relative dimensions b /a=1, 0.1,
0.01, 0.001, 0.0001, and 0.00001. The bottom solid curve shows the
Norris result 
Eq. �44�� for a very thin strip of rectangular cross-
section. For comparison, the upper dashed line shows F3 /6� and
the lower dashed curve shows F4 /6�.
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F�I�Ic
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FIG. 10. Plots of the loss function L vs F= I / Ic in the thin-film
limit calculated from Eq. �62� for strips of different cross-sectional
shapes characterized by the parameter �=1, 3, 10, 30, 100, and
1000 �top to bottom� in Eq. �1�. The top dashed curve shows the
Norris result for an elliptical cross-section 
Eq. �36��, and the bot-
tom dashed curve shows the Norris result for a thin strip of rectan-
gular cross-section 
Eq. �44�� �Ref. 1�.
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FIG. 11. The solid curves show plots of Lef f�Fp� /L�Fp� for
�=10 and values of �=0 �elliptical cross-section�, 10, 90.3, and �
�rectangular cross-section� in the thin-film limit, where Lef f�Fp� is
given by Eq. �71� and L�Fp� by Eq. �62�. The dashed line shows the
corresponding ratios when �=0 and Jc is independent of B.
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E. Jc(B) in the thin-film limit

All the results in this paper have been carried out using
the assumption that the critical current density Jc is indepen-
dent of the local flux density B. To carry out loss calculations
when Jc depends strongly upon B requires intensive numeri-
cal work, even in the thin-film limit, because the profiles of

By�x ,0 , t� and J̄z�x , t� then must be calculated self-
consistently at all times t during the ac cycle. To account
approximately for the effect of self-field suppression of Jc�B�
upon the ac losses, we can make use of Eqs. �36�, �44�, and
�62�–�65�, which assume a constant Jc, by replacing Jc by

JcI=Jc�BI�, where BI is the average of By�x ,0� over the flux-
penetrated band c�x�a when the peak current is I. From
Eqs. �15�–�20� we thus obtain

BI =
1

a − c
�

c

a

By�x,0� �66�

BI = �0JcIbP��c̃� , �67�

where the function P��c̃� and its limits when �→0 and � are
given by

P��c̃� =
1

�1 − c̃�tan−1 �
�tanh−1� �2�1 − c̃2�

1 + �2�1 − c̃2�
+

�1 + �2�1 − c̃2�
�

tanh−1�1 − c̃2 −
�1 + �2

�
tanh−1��1 + �2��1 − c̃2�

1 + �2�1 − c̃2�
� ,

�68�

P0�c̃� =
�1 − c̃2 − c̃2 tanh−1�1 − c̃2

2�1 − c̃�
, �69�

P��c̃� =
2��1 − c̃2tanh−1�1 − c̃2 + ln c̃�

��1 − c̃�
, �70�

and F= I / Ic in Eqs. �16�, �18�, and �20� must be replaced by
FI= I / IcI, where IcI=ScJcI. The transport ac loss per cycle per
unit length at each current-peak value I is then approximated
by Q�=�0IcI

2 L�FI�, where L is given by Eq. �62� for 0��
��, Eq. �36� for �=0, and Eq. �44� for �=�. We can define
Lef f making reference to the critical current density Jcp
=Jc�Bp�, where the subscript p refers to full penetration of
the strip �i.e., when c̃=c /a=0�, where Bp=�0JcpbP��0� and
the full-penetration critical current is Icp=ScJcp. As a func-
tion of Fp= I / Icp, we therefore have

Lef f�Fp� =
Q�

�0Icp
2 = � JcI

Jcp
�2

L�Fp
Jcp

JcI
� . �71�

To proceed further, we need an explicit model for the
dependence of Jc�B�. Choosing the Kim model,

Jc�B� = Jc�0�/�1 + B/B0� , �72�

we can solve Eq. �67� to obtain

JcI

Jcp
=

1 + �1 + 4�P��0�

1 + �1 + 4�P��c̃�
, �73�

where c̃ is determined as a function of Fp by numerically
solving Eq. �16� and �18�, or �20� with F replaced by
FpJcp /JcI. The dimensionless parameter �=�0Jc�0�b /B0 is a
measure of how strongly Jc depends upon B.

Numerical calculations for various values of � and � re-
veal that including the B dependence of Jc�B� does not have
a dramatic influence upon Lef f�Fp�. Shown in Fig. 11 is a plot
of the ratio Lef f�Fp� /L�Fp� for �=10 and values of �=0 �el-
liptical cross-section�, 10, 90.3, and � �rectangular cross-
section� in the thin-film limit, where Lef f�Fp� is given by Eq.

�71� and L�Fp� by Eq. �62�. On a log-log plot the power-law
dependence of Lef f�Fp� differs only slightly from that of
L�Fp�.

IV. DISCUSSION

In this paper I have addressed the question of whether the
ac transport losses in type-II superconducting strips should
vary as F3, F4, or something in between, where F= I / Ic, I is
the peak alternating current, and Ic is the critical current. To
account for effects of the cross-sectional shape and the thick-
ness dependence of the strips, I did calculations assuming
cross-sections whose shapes are modeled by Eq. �1�, which,
by varying the shape parameter �, describes an ellipse when
�→0, a rectangle when �→�, and something in between
for intermediate values of �.

In Sec. II A I showed how the vector potential and mag-
netic field in thick films can be calculated to high accuracy
using this function, and in Sec. II B I used the complex-
magnetic-field method to calculate the magnetic field and
sheet-current density for thin films with cross-sections that
are elliptical, rectangular, or something in between. In Sec.
III I discussed how to use the magnetic fields obtained as
above to calculate hysteretic ac transport losses, beginning
with a description of some general loss expressions in Sec.
III A.

I addressed the behavior in strips of elliptical cross-
section in Sec. III B. In Sec. III B 1 I reviewed the results of
Norris1 and calculated the fraction of losses attributable to
the By contribution, and in Sec. III B 2 I discussed the origin
of the F3 dependence of the ac losses for small F.

For samples of rectangular cross-section, discussed in
Sec. III C, I concluded that the losses should always vary as
F3 for sufficiently small F. However, I found for thin films
that there is a relatively large range of values of F for which
the losses vary as F4 and that as the film becomes very thin,
the range of values of F for which the F3 behavior holds
becomes very small. In Sec. III C 2 I used a conformal-
mapping method to obtain approximations for the F depen-
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dence of the ac losses in a rectangular strip, and in Sec.
III C 3 I presented plots of numerically calculated ac losses
for rectangular strips of various thicknesses, showing the
transition between F3 and F4 behaviors.

In Sec. III D I calculated the ac losses in very thin strips
of intermediate cross-section characterized by the shape pa-
rameter �. For the limiting cases of �=0 �elliptical cross-
section� and �=� �rectangular cross-section� my results re-
duced to those of Norris,1 but for intermediate values of �
the calculated losses were between these two limits.

To investigate to what extent the magnetic-field depen-
dence of the critical current density Jc plays a role, in Sec.
III E I used the Kim model to examine the influence of Jc�B�
in thin films. I found that while the B dependence does affect
the magnitude of the ac losses, it does not have a significant
effect upon the F dependence of the losses.
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APPENDIX A: ELLIPTICAL CROSS-SECTION

The vector potential generated by a uniform current den-
sity Jc flowing in the z direction through a cylinder of ellip-
tical cross-section centered on the z axis, having semimajor
axis a along the x axis and semiminor axis b along the y axis
is Ace�x ,y�=Acze�x ,y�ẑ 
Eq. �5��, where

Acze�x,y� = −
�0Jc�bx2 + ay2�

2�a + b�
�A1�

on or inside the ellipse �x /a�2+ �y /b�2=1, and

Acze�x,y� = − R
�0Jcab

2�a2 − b2�
�� − �2 − a2 + b2�

+ �a2 − b2�ln�  + �2 − a2 + b2

a + b
��, b � a ,

�A2�

=− R
�0Jca

2

2
�1

2
+ ln� 

a
��, b = a , �A3�

on or outside the ellipse, where =x+ iy and R denotes the
real part.

Analytic expressions for the x and y components of the
corresponding flux density Bce�x ,y�=��Ace�x ,y� are given
in Ref. 1.

APPENDIX B: RECTANGULAR CROSS-SECTION

The vector potential generated by a uniform current den-
sity Jc flowing in the z direction through a cylinder of rect-
angular cross-section centered on the z axis, having width 2a

along the x axis and height 2b along the y axis is Acr�x ,y�
=Aczr�x ,y�ẑ 
Eq. �5��, where

Aczr�x,y� =
�0Jc

4�
��x − a�2�tan−1� y + b

x − a
� − tan−1� y − b

x − a
��

+ �x + a�2�tan−1� y − b

x + a
� − tan−1� y + b

x + a
��

+ �y − b�2�tan−1� x + a

y − b
� − tan−1� x − a

y − b
��

+ �y + b�2�tan−1� x − a

y + b
� − tan−1� x + a

y + b
��

+ �x − a��y + b�ln
�x − a�2 + �y + b�2�

− �x − a��y − b�ln
�x − a�2 + �y − b�2�

+ �x + a��y − b�ln
�x + a�2 + �y − b�2�

− �x + a��y + b�ln
�x + a�2 + �y + b�2�

+ 4a2 tan−1�b

a
� + 4b2 tan−1�a

b
�

+ 4ab ln�a2 + b2� .� �B1�

The x and y components of the corresponding flux density
Bcr�x ,y�=��Acr�x ,y� are

Bcxr�x,y� =
�0Jc

4�
�2�y − b��arctan� x + a

y − b
� − arctan� x − a

y − b
��

+ 2�y + b��arctan� x − a

y + b
� − arctan� x + a

y + b
��

+ �x + a�ln� �x + a�2 + �y − b�2

�x + a�2 + �y + b�2�
+ �x − a�ln� �x − a�2 + �y + b�2

�x − a�2 + �y − b�2�� , �B2�

Bcyr�x,y� =
�0Jc

4�
�2�x − a��arctan� y − b

x − a
� − arctan� y + b

x − a
��

+ 2�x + a��arctan� y + b

x + a
� − arctan� y − b

x + a
��

+ �y − b�ln� �x − a�2 + �y − b�2

�x + a�2 + �y − b�2�
+ �y + b�ln� �x + a�2 + �y + b�2

�x − a�2 + �y + b�2�� . �B3�

APPENDIX C: NUMERICAL CALCULATION OF BI(x ,y)

The auxiliary magnetic induction BI�x ,y�=��AI�x ,y�

see Eq. �9�� is generated by a uniform current density Jz=
−Jc flowing only in the cross-section SI. The x and y com-
ponents of BI�x ,y� readily can be calculated numerically
from the following one-dimensional integrals:
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BIx�x,y� =
�0Jc

4�
�

−c

c

ln� �u − x�2 + 
yI�u� + y�2

�u − x�2 + 
yI�u� − y�2�du , �C1�

BIy�x,y� =
�0Jc

4�
�

−y0

y0

ln� 
xI�v� − x�2 + �v − y�2


xI�v� + x�2 + �v − y�2�dv , �C2�

where the functions yI�x� and xI�y� are given in Eqs. �6� and �7�.
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